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Analysis of Sea Clutter Data 

Executive Summary 

This report represents the results of a study performed under the task ADA95/080- 
TSSD support for Project AIR 5276. Under this task, TSSD is providing advice to the 
RAAF on several aspects of the upgrade of the P3C Orions with a focus on the Israeli 
designed EL/M 2022 maritime surveillance radar system being installed as part of this 
upgrade. The performance of maritime surveillance radars is adversely affected by 
returns from the sea surface - sea clutter, therefore understanding of the behaviour and 
properties of sea clutter is important for validation and optimisation of EL/M 2022 
detection performance prediction in support of AIR 5276. 

For radars in which the resolution cell dimensions are much greater than the sea swell 
wavelength and for grazing angles greater than about 10°, it is well known that the 
clutter amplitude is Rayleigh distributed. As the radar resolution is increased and/or 
for smaller grazing angles, the clutter amplitude distribution is observed to develop a 
longer "tail" and displays a larger standard deviation-to-mean ratio than would be 
predicted under the Rayleigh distribution. 

The report presents the results of comparative analysis of the main non-Rayleigh 
models (Log-Normal, Weibull and K-distribution) which have been applied to sea 
clutter amplitude distribution, and the methods for estimation of their parameters. 

The methods are compared against a single data set obtained from the data base of 
recording signals of the cliff-top positioned INGARA system. It has been shown that 
the K-distribution is the most appropriate model for sea clutter in the low Probability 
of False Alarm (PFA) region. 

Several existing methods for estimation of the parameters of the K-distribution have 
been analysed, and some recommendations about their implementation have been 
suggested. 

Except for the K-distribution, non-Rayleigh distributions are not derived from a 
physical model or clutter scattering mechanism. Their choice and validation are based 
only on their agreement with experimental data. Although the amplitude distribution 
is sufficient to predict the performance of fixed threshold single pulse detection, other 
forms of processing require knowledge of the correlation properties. The effect of 
describing sea clutter by using the compound form of the K-distribution is to allow a 
greater variety of processing schemes to be accurately evaluated; these include pulse to 
pulse integration and cell averaging Constant False Alarm Rate (CFAR) processing. 
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1. Introduction 

The performance of maritime surveillance radars is adversely affected by returns from 
the sea surface - sea clutter. Although there exists much theoretical and experimental 
work in the literature [1-22], our understanding of sea clutter behaviour is still 
incomplete. Thus, different authors use different models for the sea clutter amplitude 
distribution, and suggest different methods for estimating the parameters of these 
distributions. This report presents the results of comparative analysis of the models 
which have been applied to sea clutter amplitude distribution, and the methods for 
estimation of their parameters. More detailed consideration is given to the K- 
distribution as the most appropriate model for sea clutter in low Probability of False 
Alarm (PFA) region. 

With the exseption of K-distribution, non-Rayleigh distributions are not derived from 
a physical model or clutter scattering mechanism. Their choice and validation are 
based only on their agreement with experimental data. Although the amplitude 
distribution is sufficient to predict the performance of fixed threshold single pulse 
detection, other forms of processing require knowledge of the correlation properties. 
The effect of describing sea clutter by using the compound form of the K-distribution 
[7-9] is to allow a greater variety of processing schemes to be accurately evaluated; 
these include pulse to pulse integration and cell averaging Constant False Alarm Rate 
(CFAR) processing. It has been found [7] that generally the correlation properties, as 
expressed in the compound form of the K-distribution, have much more impact on 
processing performance than the non-Rayleigh amplitude distribution alone. 

2. Analysis of sea clutter data 

For radars in which the resolution cell dimensions are much greater than the sea swell 
wavelength, and for grazing angles greater than about 10", it is well known that the 
clutter amplitude is Rayleigh distributed. This is a consequence of the Central Limit 
Theorem since the returns can be thought of as being the vector sum of randomly 
phased components from a large number of independent scatterers. The clutter returns 
have a fairly short temporal decorrelation period (typically of the order of 10 ms) and 
may be fully decorrelated from pulse from pulse by the use of frequency agility with 
the steps at least the transmitted pulse bandwidth. There is no inherent correlation of 
returns in range, the sole determinant of this being the transmitted pulse length [1,2]. 

As the radar resolution is increased and/or for smaller grazing angles, the clutter 
amplitude distribution is observed to develop a longer "tail" (higher number of large 
amplitude values) and displays a larger standard-deviation-to-mean ratio than would 
be predicted under the Rayleigh distribution. The returns are often described as 
becoming "spiky". The temporal and spatial correlation characteristics of the clutter 
also change. Clutter spikes having temporal decorrelation periods of several seconds 
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or more are often observed, and the clutter returns are no longer fully decorrelated 
from pulse to pulse by the use of frequency agility. Spatial correlation between echo 
amplitudes from adjacent resolution cells appears, which is generally more 
pronounced for cell sizes smaller than the scale of large features on the sea surface 
(such as the wavelength of the dominant ocean gravity wave). 

Partially successful models for the amplitude distributions that have been applied to 
such data sets include the Log-Normal and Weibull. These models have resulted from 
empirical studies of the sea clutter and are not based on any physical understanding of 
the clutter returns. Another distribution that has become increasingly popular is the 
compound K-distribution, which has the advantage over other models in that it does 
have a theoretical justification and physical interpretation. The following sections 
briefly describe the distributions, their capability to represent the real sea clutter 
statistical properties, and the methods for estimating of their parameters. 

Throughout this report, it will be assumed that independent samples are available for 
parameter estimation. As high resolution radar images contain correlations resulting 
from underlying cross-section modulations, this assumption necessitates subsampling 
of the data to remove any correlations before parameter estimation is performed. 
Therefore, initially detailed analysis of sea clutter correlation properties for high 
resolution radars has to be done, in order to choose the correct way of subsampling the 
data. 

It has been found from practical measurements over a wide range of conditions that 
while microwave signals are primarily scattered by capillary waves of the ocean, the 
undulating structure of the ocean gravity waves causes variations in the mean power 
level scattered from a given patch [3-10]. Therefore, the clutter returns for high 
resolution radars can be well modelled by two components. 

The first component models scattering effects due to small scale structure (such as 
capillary wave or ripples) and has a Rayleigh distribution. Temporal and spatial 
correlation properties of this component are : 

• the Rayleigh component decorrelates over a few milliseconds (for fixed frequency 
operation this component of clutter returns will typically decorrelate over periods 
of 5 to 10 ms) and can be decorrelated from pulse to pulse by frequency agility with 
steps greater than or equal to the pulse bandwidth; 

• the small scale features at two spatially separated patches are uncorrelated. 

The second component models the local mean of the first component, ie it models 
scattering effects due to large scale structures (such as gravity waves). The mean level 
varies in time, and from cell to cell, having a power which is Gamma distributed. 
Temporal and spatial correlation properties of this component are different from those 
of the Rayleigh component: 
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• the Gamma component is unaffected by frequency agility and varies only slowly 
with time. As a result, independent samples of the underlying mean level are not 
achieved during the dwell time of conventional maritime surveillance radars. 
Moreover, the returns from a particular spike may be highly correlated even over 
several scans [7]; 

• spatial correlation of scattered power cannot be ignored if the physical separation of 
the patches is less than the correlation length of large scale structures. 

Statistically independent samples of the sea clutter amplitude distribution may be 
obtained by: 

• taking from a resolution cell, echo samples that are separated in time by intervals 
greater than the decorrelation time of the Gamma component. If the time separation 
of two echo samples is greater than the decorrelation time of the Rayleigh 
component but less than the decorrelation time of the Gamma component, the 
Rayleigh amplitude components for different returns from the cell will be 
independent, but the mean values will be correlated; 

• taking echo samples from resolution cells that are separated by distances greater 
than the decorrelation length of the large scale effects. If the spatial separation of 
two nonoverlapping resolution cells is less than the large scale decorrelation length, 
the individual Rayleigh amplitude components from the cells will be independent, 
but the underlying mean values will be correlated. 

Ideally, parameter estimation would take into account the correlations in the data, and 
would use all the available samples. However, the analysis of such correlated variables 
is difficult and beyond the scope of this report. 

2.1 Log-Normal Distribution 

Sea clutter statistics approach those of the Log-Normal distribution when a high 
resolution and horizontal polarisation radar sees sea clutter at low grazing angles 
(<p< 5°) [3,11,12]. 

In general, the Log-Normal model tends to overestimate the dynamic range of the 
actual clutter distribution while the Rayleigh model tends to underestimate the 
dynamic range. 

From the detection standpoint, it can be said that the Log-Normal distribution 
represents a worst case distribution compared with the Rayleigh distribution which 
represents the best case. 
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2.1.1 Statistical characteristics of the Log-Normal distribution 

The Probability Density Function (PDF) of the Log-Normal distribution is given by 

v2 

/,(„)-      'expI-Oü^üL), „>0. (1) 

A random variable a, is Log-Normal if and only if ln(a) is Normally distributed with 
mean |x and variance a ; in our case, a signifies the random amplitude returns of the 
sea clutter. 

The model Cumulative Distribution Function (CDF) then may be expressed in terms of 
the Normal distribution, that is: 

FL(a0) = P(a < a0) = P(\n(a) < ln(a0)) = <D{[ln(a0) - u]/a}, a > 0, (2) 

f    1              t2 

where 4>(z) = I   ,— exp{ }dt. 
t„-yj2n 2 

The false alarm rate for a given threshold a0 is given by expression 

P(a>a0) = l-FL(a0). (3) 

The  r'h moment of a can be shown to be 

[Lr = E(ar) = cxp(r[l+-r2a2). (4) 

Therefore, the mean and variance for the Log-Normal distribution are: 

£(ö) = exp(n+^a2), (5) 

Var(a) = exp(2u+a2){exp(a2)-l}. (6) 

2.1.2 Estimation of the parameters of the Log-Normal distribution 

A standard approach to parameter estimation is to use the maximum likelihood (ML) 
solution, which provides optimum parameter estimates in the sense that these 
estimates are the most probable parameter values, given the data (i.e. the sample 
values) but no prior knowledge [13-15]. 
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If n independent samples a1,a1,...,an are drawn from a distribution with m 

parameters 01,02,...,9m, then the joint PDF of al,a2,...,an is the product of the 
marginal PDFs: 

/(a1,fl2,...,fln;01,e2,...,ej = /(a1;e1,e2)...,ej/(fl2;e1,02,...,em).../(an;01)02,...)em) 

This PDF when expressed as a function of 0j,02,...,0m is called the likelihood 
function: 

Ln(01,02,...,0m;a1,a2,...,fln) = n/(a,.;01,02,...,0m). (7) 

The ML estimate of 0,,02,...,0m is the set of values 0,,02,...,0m that maximises the 
value of the likelihood function. The ML estimate is the "most likely" set of parameter 
values given the observed data. 

Since the logarithm function is a monotonic function, the ML estimate will also 
maximise the log-likelihood function: 

ln[L„(01,02,...)0m;a1,fl2,...,an)] = Xln[Ln(01,02,...,0m;a,.)]. (8) 
i=i 

In many cases it is easier to obtain a closed-form solution with the log-likelihood 
function. If numerical maximisation must be used, elimination of the product gives 
more stable results. 

The log-likelihood function for the Log-Normal distribution is given by 

n 

ln[L„()Li,a2;a1,a2,...,flJ] = ^ln[Ln(^,a2;a,.)]. (9) 
i=i 

Taking the derivative of (9) with respect to the parameters \i and c 2 and setting each 
to zero gives the following system of equations for the ML estimates of the parameters, 
which are denoted by |i ML and 6 2ML respectively: 

|j-[|:in(L„(n,a2;«,.))]V=^=0 

d n ■ (10) 

aCT2[Sin(^(^2;«.))]U^ = ° 
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ML estimates have the following asymptotic properties [13]: 

1) ML estimates are consistent, i.e. they converge in probability to the true value as 
the sample size increases to infinity; 

2) ML estimates are asymptotically efficient, ie. they approach the Cramer-Rao bound 
as the sample size or the signal-to-noise ratio increases to infinity. 

The ML estimates of parameters of the Log-Normal distribution \i and a2 are: 

£*L=-5>(*,), (ii) 

o^=-l[ln(fl()-AiiL]2- (12) 

Formula (12) gives a consistent but biased estimate of a 2. An unbiased estimate of a2 

is defined by 

«*LU =7-^5>(fl1-)-Aitt]
2- (13) 

(w-1) M 

2.2 Weibull Distribution 

The Weibull PDF is a two-parameter distribution, of which the Rayleigh distribution is 
a special case. The first parameter of the distribution, a shape parameter, relates to the 
skewness to the distribution; whereas the second parameter, a scale parameter, scales 
the distribution, as the name implies. This distribution is mathematically convenient as 
it allows the skewness of the distribution to be changed with a single parameter to 
match the characteristics of the data. 

The Weibull PDF is known to represent sea clutter quite well at low grazing angles 
and/or at high-resolution situations: the choice of appropriate values of the shape and 
scale parameters allows the simulation of returned echo signals with required 
spikiness and power characteristics. 

The Weibull clutter model [15-19] offers the potential to accurately represent the real 
clutter distribution over a much wider range of conditions than either the Log-Normal 
or Rayleigh model. By appropriately adjusting its parameters, the Weibull distribution 
can be made to approach either the Rayleigh (a member of the Weibull family) or Log- 
Normal distribution. From the detection standpoint, it can be said that the Weibull 
distribution represents an intermediate model that may more accurately represent the 
real detection performance in clutter than either Rayleigh or Log-Normal distribution. 
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2.2.1 Statistical characteristics of the Weibull distribution 

In the Weibull clutter model, the amplitude PDF is given by 

fw(a) = ^-(-)*-' exp{-(-r},       a > 0,03 > 0,y > 0, (14) 
03   05 03 

where y is the shape parameter and G5 is the scale parameter of the Weibull 
distribution, respectively. 

The Weibull distribution reduces to the Rayleigh distribution for y = 2 (which has been 
a common model for low-resolution sea clutter [3] ). Smaller values of y increase the 
skewness of this distribution, and allow the simulation of spiky clutter. 

The CDF of the Weibull distribution is given by 

iv(a) = l-exp{-(-)Y}. (15) 
05 

The r'h moment of a is 

Uy = E(ar)=G3T(l + -), (16) 
Y 

where T(z) is the Gamma function. 

Therefore, the mean and variance for the Weibull distribution are: 

E{a)=mT(\ + -), (17) 
Y 

r2rrvi  i  2\     -1-2/-      1 Var(a) = 03 z[T(l + -)-Tz(l + -)]. (18) 
Y Y 

2.2.2 Estimation of the parameters of the Weibull distribution 

The maximum likelihood equations for the parameters of the Weibull distributions are 

|r[Sln(^(»i,a2;fl/))]UJB = 0 
f 't • (19) 

[5>(Ln(u.,a2;a,))]l 2   ,  =0 
3a2 Li 

After elementary transformations, the above equations may be put in the form 
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5>,f*ln(fl/) „ 

Xfl/"1 ML "  i=l 

i'=l 

®ML  = 

X«/* 
i'=l 

1 

YML 

(20) 

which are not of closed form. An iterative procedure such as the Newton-Raphson 
technique may be utilised to solve these equations, yielding the ML estimates of the 
shape and scale parameters of the Weibull distribution. Convergence can be somewhat 
slow, and simpler closed form solutions, using either moments or order statistics [18], 
are available. Unfortunately, both simpler techniques exhibit a bigger variance of the 
estimated parameters compared with the ML method. 

Menon proposed an estimation procedure which has the attractive feature of leading 
to a chosen false alarm rate for all values of y and 03 [19]. The estimators are 

i Men 
71   n-\ -X(ln(fl,o)2- -Xln(«.-) 

7=1 V" ;=i 

-Yi 

(21) 

® Men  = GXP £ln(a,) + 0.5772y 
;=' 

w-l 

Urn 
(22) 

2.3 K-distribution 

The statistical results of many experiments in recent years provide evidence that the K- 
distribution can serve as a limiting distribution for sea clutter [3,4,7-12]. 

The K-distribution is based on an underlying physical model that treats the received 
signal as a superposition of returns from a number of independent patches or 
scatterers, illuminated by the radar beam [5]. The effective number of scatterers along 
with their relative bunching is critical in determining the overall statistics of the 
received data. 

Analysis of the sea clutter data displays two dominant components with differing 
correlation times, contributing to the amplitude distribution [5,8-10,20,21]. The fast 



DSTO-TR-0647 

varying component, which can be identified with the changing interference between 
capillary waves, has a correlation time in the order of milliseconds and can be 
decorrelated by the use of frequency agility. The slow varying component which can 
be associated with the gross wave structure of the sea surface, has a correlation time of 
the order of seconds and is unaffected by frequency agility. The spatial correlation of 
the components is also different. The interference or speckle component has range 
correlation commensurate with the pulse length and is in all ways similar to noiselike 
clutter, as its amplitude distribution confirms. The second component has considerable 
spatial correlation, depending upon aspect, which displays periodic effects and is 
coupled to the temporal correlation. 

2.3.1 Statistical characteristics of the K-distribution 

In the K-distribution model, the overall amplitude of the sea clutter return is 
represented as the product of two independent random variables: 

a = y\), (23) 

where y is the voltage envelope modulation process, which has a long correlation 
time and spatial and temporal structure, and v is the speckle voltage, which can be 
decorrelated by frequency agility. 

The results from the averaged clutter returns show that /(y) , the PDF of y, fits well 
to the generalised Chi-distribution over a wide range of radar parameters and sea 
conditions: 

/(y) = 2^2
)
Vlexp(-J2y2), (24) 

where T(v) is the Gamma function, v is a shape parameter and d is a scale parameter 
2 V 2 such that d   = r- where E(y ) is the average power of the clutter. The value of v 

depends on range, grazing angle, aspect angle, sea conditions and radar parameters. 

The speckle component is well modelled by the Rayleigh distribution and has a mean 
level determined by the first slowly varying component: 

2 
ait an 

/(«ly) = ^rexp(-^r). (25) 

The overall amplitude of the clutter is 



DSTO-TR-0647 

r 2c    cd 
fK{a) = }f(a\y)f(y)dy = ^y(y)v K_,{ca), (26) 

where ^v_,(z) is an v' -order modified Bessel function of the second kind, hence the 

name k-distribution and c = -J%d is a scale parameter. 

The CDF of the K-distribution is 

FK{a) = \ ?_(™)v£v(ca). (27) 
r(v) 2 

The r"1 moment of a is 

,      2rr(0ir + l)r(0^r+v) 
^£(a) =        nvc ■ (28) 

Therefore, the mean and variance for the K-distribution are 

2r(i.5) r(o^+v)   VTT r(05+v) 
£W=   I     rev)   °—  rw   ' (29) 

V(*a)=4n?£Lt^_*>(a) = :»_£>(a). (30) 
c      r(v) c 

Comparison with the other models shows that 

• when the shape parameter of the K-distribution is equal to infinity, the K- 
distribution reduces to the Rayleigh distribution; 

• the Log-Normal distribution is always spikier than the K-distribution; 

• when the shape parameter is equal to 0.5, the K-distribution and the Weibull are 
identical. Over a large range of values of the shape parameter, they are very similar, 
with the K-distribution being slightly more spiky than the Weibull for larger values, 
and slightly less spiky for smaller values. 

2.3.2 Estimation of the parameters of the K-distribution 

Estimating the parameters of the K-distribution from a set of sample data to establish 
the threshold level has been found to be a non trivial problem. In practice, the value 
for the shape parameter v of this distribution varies between the values of 0.1, 
corresponding to very spiky data and 20, corresponding to approximately Rayleigh 

10 
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distributed data. The form of the expression for the K-distribution is difficult to work 
with and unfortunately the ML solution is analytically intractable, which means that 
either the solution must be obtained numerically, or an alternative estimation scheme 
must be used. A numerical solution has the advantage of providing the ML parameter 
estimates but is liable to be computationally inefficient in comparison with alternative 
schemes. On the other hand, alternative estimation schemes may be computationally 
efficient, but the parameter estimates that they provide may be subject to large errors. 
It is thus of interest to compare the parameter estimation errors of these alternative 
schemes with those of the ML solution, to facilitate assessment of the trade-off 
between computational efficiency and estimation accuracy. The following sections of 
the report describe existing parameter estimation methods for the K-distribution and 
compare their characteristics. 

2.3.2.1 Maximum likelihood method 

The log-likelihood function of a sample a = (a,,a2,...,an) from the K-distribution is 
given by the expression 

ln[^(v,r,a)] = n(l-v)ln(2) + /i(l+v)ln(c)-nlnr(v)+vXln(flj) + 2ln[Äv_I(cfl1.)]. 
1=1 i=i 

The maximum likelihood equations for the parameters of the K-distributions are 

|-[Xln(Lfl(v,c;fl,.))]UMt = 0 
'=' . (31) 

^-[^ln(Ln(v,c;ai))]\c=SuL=0 
oc (=1 

As it is not possible to find analytical expressions for v ML and cML, the system (31) 
must be solved numerically. The ML estimates are obtained by using a numerical two- 
dimensional search in parameter space to locate the global maximum of the log- 
likelihood function. This procedure is tedious and the computational complexity 
increases as the number of samples is increased. The major factor in the overall 
computation time is the length of time it takes to evaluate the log-likelihood function 
[14]. Most of this time is spent computing the Bessel function for n independent 
different values. Even for small sample sizes (n < 100) it is difficult to implement the 
ML method from a computational point of view, and the amount of computations 
required to locate the maximum of the log-likelihood function makes this method 
impractical. 

Nevertheless, the ML method provides a means of estimating the variance in the 
estimated parameters. In [14] it is shown that for the K-distribution the variance of the 
ML estimate v ML satisfies 

11 
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a;   = 

a2A(v,c;a) 

V=V»..t=C|W. 
dc2 

32A(v,c;a) 

v=v«,..c=f„,. . 

2 

32A(v,c;a) 

v^w.-c=?m. _ 

92A(v,c;a) 

V=Vm,c=Cm  _ 
dvdc 3V 9c2 

where A(v,c;a) = InLn(v,c;a). 

Interchanging v and c yields a similar relationship for a2   . There are no closed-form 

solutions for these relationships and, as a result, they must be evaluated numerically to 
obtain the estimated variances. 

As the ML estimates can only be calculated by cumbersome numerical techniques, it is 
desirable to find an alternative estimation scheme that is easy to implement while 
providing near optimum error performance. Several alternative estimation schemes 
will be considered, which are based either on the matching of two different moments 
of the data, or on using the arithmetic and geometric sample means. 

2.3.2.2 Methods of moments 

A simple method of estimating the shape and scale parameters of the K-distribution 
using higher order moments is based on the result that moments of K-distributed 
random variable a are given by (28) and so any two sample moments of the data may 
be used for estimating these parameters. Thus, the ratio 

E(a2k) 

E2(ak)' 
*=1,2,. (32) 

is independent of the scale parameter c and may be used for estimating the shape 
parameter v. Then the estimate v and any one of the sample moments may be used for 
estimating the scale parameter c. 

Given n independent clutter samples, the sample moments are obtained as 

1  " 
(33) 

where mr is the  r' sample moment, n is the number of samples and  ai  is the 

amplitude of r'h radar return. 

12 
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Because the estimation of the shape and scale parameters of the K-distribution may be 
accomplished by equating theoretical expressions and calculated values for any two 
moments of the distribution and then solving for the two parameters, the question 
arises as to which two moments should be chosen. The choice will be governed by the 
errors in the resulting estimates, which can be quantified by calculating the variances, 
and hence the standard deviations, of the estimated values. 

The methods of moments work well when the number of independent samples from 
the amplitude distribution is large (i.e. greater than about 1000), but the variance in 
estimates is large for smaller sample sizes. 

2.3.2.2.1  Second and fourth sample moments based (Watts's) method 

Results in which the parameters are estimated using the second and fourth sample 
moments are given by Watts [9]. Once these moments are known, then the following 
expressions can be used to calculate the values of the shape and scale parameters of the 
K-distribution with identical second and fourth moments as the sample - i.e. the shape 
and scale parameters for the K-distribution that most closely matches the distribution 
of the test sample: 

V = 
2m2

2      j 
(34) 

\m2 

c = 2   —. (35) 

In the absence of thermal noise, when the clutter sample size is big enough, it has been 
found that the parameters v and c obtained from using (34) and (35) are in good 
agreement with the true parameters of the K-distribution for observed sea clutter. 
However, these expressions do not provide high estimation accuracy of the K- 
distribution parameters when the level of thermal noise in the test sample is large. 
Thus, if a high level of noise is expected, the modified expressions for the estimation of 
the parameters v and c have to be used. 

2.3.2.2.2 Modified Watts's method 

In the presence of high noise, the speckle component of the return is effectively 
modified by an increase in its average power. The new PDF of the speckle component 
is given by [10] 
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fMy) = 
a2^ 

exp 

71 

2  *y 
2a2+■ 

(36) 

n  ) 

where a is the overall clutter-pulse-noise return and 2(52 is the noise power level. 

The CDF of this combined clutter and noise distribution is 

F^N(ao)=P(a>ao) = jeXP 
-an 

2a2+(4y2/n) 
y      exp(-d2y2)dy .    (37) 

r(v) 

The n'  moment of the distribution of clutter plus noise is given by 

m,=j 2CT 
7t 

A^ 

2   Jr(v) 
2..2> y"-'exp(-dzy')dy (38) 

As a result, if the recorded data has a low clutter-to-noise ratio (CNR < 10 dB), then the 
resulting amplitude distribution will be significantly altered from a standard K- 
distribution with the added noise having the most effect on the low amplitude values 
of the distribution. 

According to [10], if the recorded data is of high quality and a sufficiently large 
number of independent samples is available to estimate the higher moments 
accurately, it is possible to estimate both parameters of the K-distribution and CNR 
using the second, fourth and sixth moments of the recorded data: 

2\3 

V =• 
\S(m4-2mj) 

{\2m2 -9m2m4 +mb) 

2a2^m2-[^(m4-2m2)]^ 

CNR 

I     4v 

m2 - 2(52 

2v 
„2^2      " 
C (5 

(39) 

(40) 

(41) 

(42) 

By estimating v using (34) an effective value V eff will be obtained, related to the true 

value by [10] 
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V»=T+^J- (43) 

When vising the value V eff instead of v the distribution is a reasonable fit to the tail of 

the data with added noise, but it gives a poor fit for the low amplitude values. Note, 
though, that it is the tail region that is responsible for such an important detection 
characteristic as probability of false alarm. Hence, according to Watts, for single pulse 
detection in presence of thermal noise as well as sea clutter, a reasonable guide to 
detection performance may be achieved by treating the interference signal as being K- 
distributed but with a modified shape parameter V eff. For single-pulse ideal CFAR 

detection with CNRs of 0 dB or less, a good estimate of performance will generally be 
obtained by assuming Rayleigh statistics. 

2.3.2.2.3 First and second sample moments based method 

Alternatively, estimates of the shape and scale parameters of the K-distribution may be 
obtained by using the first and second moments [4,14]. The ratio of the second sample 
moment to the squared sample mean, given by 

«2-    *<[T(y)f (44) 

m\     7C[r(v+0.5)f 

may be solved numerically to estimate the shape parameter v. Although this method 
does not have a closed-form solution, the smaller variability in the lower-order 
moments usually yields better results than higher moment methods. The scale 
parameter c may be estimated from the first moment, that is 

r(v)m, 

As mentioned before, the moments based estimation of the K-distribution parameters 
does not perform well when the available number of samples is limited because in this 
case the sample moments do not represent good estimates of the true moments, and 
meaningful parameter estimates of the distribution are not obtained. 

The moments based methods of estimating of the K-distribution parameters are also 
particularly susceptible to test data sets in which a target is unwittingly present. In this 
case they provide an estimate of the shape parameter which is much less than the real 
value of this parameter. 

15 



DSTO-TR-0647 

2.3.2.3 Arithmetic and geometric means based (Raghavan's) method 

A method proposed by Raghavan [4,14] was found to be less susceptible to these 
problems within any particular test sample. In this method the similarity between the 
K-distribution and the simpler Gamma distribution given below is exploited. The PDF 
for the Gamma distribution is given by the expression: 

fG(a)=   f   n  exp(--) . (46) 
fcßr(ß) b 

where ß and b are the shape and scale parameters of the Gamma distribution, 
respectively. It is straight forward to derive relationships between the arithmetic and 
geometric means of the sample distribution and the ML estimates of the shape and 
scale parameters of the corresponding Gamma distribution. Specifically, if the 
arithmetic and geometric means of the sample distribution, ma and m , are derived by 

expressions: 

1 1  " 
ma =-(a,+...+0 = -I>, / (47) 

mg = V(fl,...fl„) = (lWX  ' (48) 
«=i 

then the ML estimates of the shape and scale parameters of the corresponding Gamma 
distribution, ß and b, for the sample are related by the following equations [4]: 

P„= —= ßexp(-V(ß)) , (49) 
g 

b = j- , (50) 

where \j/(ß) is the Digamma function which is defined as y(x) = —[ln(r(x)] = . 
dx T{x) 

The function on the right-hand side of (49) may be computed easily by the following 
expression [4]: 

«xpw^nfi+^y'expfcy. (51) 
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By equating the first and second moments of the random values, one of which is K- 
distributed and another has a corresponding Gamma distribution, the parameters v 
and c for the K-distribution may be expressed as functions of the Gamma density 
parameters (ß and b). Specifically, the parameter ß of the equivalent Gamma density 
may be expressed in terms of the parameter, v, by the following relation: 

ß = 
4vr2(v) 

7cr2(v+05)-l 
(52) 

Raghavan argues that because the K- and Gamma distributions are similar over a 
range of parameter values where the K-distribution is highly non-Rayleigh, an 
estimate that approximates the ML estimate of the K-distribution can be delivered with 
the same statistic used to compute the ML estimate for the Gamma distribution. 
Therefore, a good estimate for the shape parameter v of the K-distribution can be based 
upon the relation pn =ma/mg . Since ma, mg and pn are evaluated from a finite 

number of samples, these quantities are in general random values and their statistics 
depend upon the PDF of the samples {a,} and on the number of samples n, used in the 
computation. Raghavan derives the expected value of pn for the K-distribution in 
terms of v: 

E(P„) = 
T(05+v - 0.5/T1 )T(15 - 05n~x) 

r(v) 
r(v-05n-l)r(l-05n-1) 

-in-l 

r(v) 
(53) 

for n>(2v) -l 

Using the observed value of pn, this equation can be solved numerically in order to 
estimate the shape parameter v of the K-distribution. Then using the expression for the 
first order moment of the K-distribution random values, the scale parameter c may be 
obtained from the estimate v and m„ as 

c = - 
2 T(v+05)r(1.5) 

m„ r(v) 
(54) 

The K-distribution with the derived parameters (v and c) has approximately the same 
arithmetic and geometric means as the original test set. This method is a numerically 
fast method of estimating the ML parameters at the cost of greater complexity when 
compared to the methods of moments approach. 

For highly and moderately non-Rayleigh data, Raghavan's method gives better 
estimates for small sample sizes in comparison to the method of moments techniques. 
Unfortunately, this method also has limitations. When the K-distribution is more 
nearly Rayleigh, there is little similarity between the K- and Gamma distributions. The 
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applicability of Raghavan's method is diminished in such cases. A comparison of 
higher order moments of a K-distributed random variate and those of the equivalent 
Gamma variate shows that this approach yields good approximations to the K- 
distribution only for the range 0.2 < v < 2, which physically represents spiky clutter 
characteristics. 

2.3.2.4 Modified chi-square test 

It was shown in [3], that from the radar perspective, standard statistical tests such as 
the chi-square goodness of fit test are of limited use for clutter data. The reason is that 
these tests place an equal importance in the goodness of fit on all regions of the 
probability space. In radar applications, goodness of fit of clutter statistics to a model is 
important mainly in the low PFA region. 

To obtain a procedure which brings out the relative results of various models in the 
important low PFA region, the modified chi-square test was proposed [3]. Boundaries 
of intervals in this test were determined for each of the statistical models in the 
amplitude region for which PFA is < 0.1, assigning a zero weighting in the amplitude 
region where the PFA is greater than 0.1. 

The modified % * index is defined as 

Xm h   N(o.\Pi)   ' {55) 

where K is the number of intervals into which the low PFA region of the statistical 
model is divided, /, is the observed number of occurrences of a clutter sample having 

an amplitude within the /""interval, N is the total number of amplitude samples 
forming the histogram, and #(0.1/7,) is the weighted expected number of occurrences 

in the i'h interval for the statistical model in the low PFA region. 

The ensemble average of the modified chi-squared index %1 f°r a group °f resolution 
cells can be computed for each model and compared to give a quantitative measure of 
the relative goodness of fit in the low PFA region. A lower modified chi-squared index 
X^ value indicates a better fit of the model to the data being considered. 

2.3.2.5 The choice of the method for estimating parameters of the K-distribution 

The discussion of the previous sections of the methods of estimation of the K- 
distribution parameters, may be summarised as follows: 
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• the ML method theoretically provides the best statistical estimates of the 
parameters of the K-distribution but this method is impractical from a 
computational point of view; 

• the moments based methods guarantee good quality of the estimates of the 
parameters of the K-distribution for large sample sizes (n > 1000) when there is no 
unwitting presence of a target; 

• the moments based methods are better suited to the estimation of large values of 
the shape parameter of the K-distribution. This can probably be attributed to the 
increased variability in the moments of the heavier tailed distributions that occur 
for small values of the shape parameter; 

• the first and second sample moments based method (FSM) is more accurate than 
Watts's method (using the second and fourth sample moments) because of the 
smaller variability in the lower-order sample moments; 

• Raghavan's method works well even for small sample sizes if the value of the 
shape parameter of the K-distribution is small (v <2) where the correspondence 
between the K- and Gamma distributions is the strongest. 

• if the observed data has a low clutter-to-noise ratio (CNR < 10 dB), then the 
resulting amplitude distribution will be significantly different from a standard K- 
distribution and the interference signal should be treated as being K-distributed 
but with the modified shape parameter v eff . 

Comparison of Raghavan's method and the moments based methods shows that each 
of them can perform well and provide accurate estimates of the parameters of the K- 
distribution for specific conditions. With sufficient computational resources and time, 
it is possible to calculate three pairs of the estimates for the shape and scale parameters 
of the K-distribution (using FSM, Watts's and Raghavan's methods) and then choose 
the best pair for each particular situation by the following simple logic: 

• if the observed data has a low clutter-to-noise ratio (CNR < 10 dB) then the pair of 
estimates obtained by using the modified Watts's method should be chosen; 

• if the observed data has a high clutter-to-noise ratio (CNR > 10 dB) and the sample 
size is big enough, or Raghavan's method gives the estimate for the shape 
parameter v > 2, then the pair of estimates obtained by using the FSM method 
should be chosen; 

• otherwise the pair of estimates of the shape and scale parameters of the K- 
distribution obtained by using the Raghavan's method should be chosen. 

19 



DSTO-TR-0647 

This logic is determined by the fact that CFAR processors are much more sensitive to 
errors in the estimated value of the shape parameter for small values of this parameter 
than for large values [22]. The accuracy of the estimates of the shape parameter of the 
K-distribution is more important for smaller values of this parameter. For large values 
of the shape parameter, the K-distribution approaches the Rayleigh distribution and its 
shape becomes insensitive to this parameter. Thus the number of samples needed to 
estimate the shape parameter to a given accuracy increases rapidly with increasing 
values of this parameter, but the number of samples needed to obtain a PDF that fits 
the data to a given level of the mean-square difference between the true PDF and the 
PDF given by the estimated parameters decreases with increasing the value of the 
shape parameter [14]. 

Another simple and effective way to choose the best estimates of the K-distribution 
parameters for the particular sea clutter data set is to calculate the modified chi- 
squared index %2

m values for the statistical models, parameters of which are defined by 
using the considered estimation methods (Watts's, FSM and Raghavan's), and 
compare these values. The model with the best pair of estimates gives the lowest value 
of the modified chi-squared index x„ • 

3. Performance results 

In order to illustrate the advantages of using the compound K-distribution model over 
other models for estimating the parameters of sea clutter, and compare the different 
methods for estimating of the K-distribution shape and scale parameters, different 
models for the amplitude distribution have been applied to a single data set from 
database of experimentally collected sea clutter using the INGARA radar. 

The INGARA radar system was developed within the Tactical Surveillance Systems 
Division of DSTO as a technology demonstrator aimed at investigating and 
demonstrating the application of Synthetic Aperture Radar to the unique surveillance 
challenges posed by the large sparsely populated areas across the Northern Australian 
coastline. The main sensor of the INGARA system is a coherent, horizontal polarised, 
X-band multi-mode radar system. The flexible nature of the design of this radar 
system, based on open architectures, has allowed for the addition of maritime 
surveillance modes specifically designed to collect radar backscatter from the surface 
of the ocean (sea clutter). 

The data set, that has been chosen, was taken from the database of experimental data, 
which were collected between 9 and 11 November 1993 at Port Noarlunga South, 
South Australia, using the INGARA radar system at frequency of 9.375 GHz . For this 
trial the radar was set up on a cliff-top approximately 30 m above the sea surface. Most 
of the data consists of files containing 30 second of data collected with the radar 
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pointed in 15° intervals in azimuth angle between each data run. The azimuth angular 
range of the measurements was from 210° to 345°. 

The chosen data set consists the data for the antenna looking at an angle of 315°. The 
measured meteorological conditions were : 

• Wind Speed 5.6 m/s 
• Wind Direction 138° 

• Air Temperature 15.8°C 

• Sea Temperature 19.4° C 
• Relative Humidity 54.7 
• Barometric Pressure 1015 

Observations of the sea made from the radar site note that it was slight, with small 
wind ripples, probably sea state 2. 

The ESJGARA radar coherently sampled data at a 50 MHz rate (3 m in range). Each 
sample is a 4-byte word that represents the HI and HQ returned signals at a particular 
sample instant (ie. each channel is digitised to 8 bits). The symbols HI and HQ refer to 
the horizontal polarised inphase and quadrature channels, respectively. 

The main parameter of interest to radar designer is the false alarm rate, which sets the 
detection threshold for the radar system. It is (usually) determined through fitting the 
assumed model for the clutter to a limited sample of clutter returns, and deducing the 
threshold from the statistics associated with the model. In this study, because we have 
a sufficiently large data set, we can make a direct comparison of the false alarm rates 
experienced with the different thresholds associated with the models, to assess the 
relative merits of the models. In general, the better the fit of the clutter parameters to 
the actual data, the closer will be the desired and actual false alarm rates. 

An image of the amplitude of the clutter for the data set used in the analysis is 
presented on Figure 1. Each range window of the image represents 300 consecutive 
range samples, or 900m span, and the time duration is approximately 0.3 s with a PRF 
of 333.3 Hz. The distance from the radar to the first range bin is 3384 m. The data has 
been normalised to have unit second sample moment. 

Figure 2 presents the averaged temporal (for the speckle component) and spatial (for 
the Gamma component) autocorrelation functions for the data set. At any range, the 
return fluctuates with a time constant of approximately 10 ms as the scatterers within 
the patch move with the internal motion of the sea and change their phase relations. 
The local mean level varies with the range owing to bunching of the scatterers. The 
correlation length of the sea surface in the range direction is about 6.5 m. The duration 
( 0.3 s) of the data collection is not sufficient for the bunching to change at any given 
range. 
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Figure 1 Experimentally collected sea clutter 
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Figure 2 Temporal and spatial autocorrelation functions for experimentally collected sea 
clutter 
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As the sea clutter shows two dominant fluctuation components, the data set contains 
many more independent values of the speckle than of the underlying modulation. The 
analysis has therefore been adapted to assume these two components, with a large 
number of independent speckle samples and a limited number of the modulation. 

Subsampling of the data was done to remove any correlations resulting from 
underlying cross-section modulations before parameter estimation was performed. In 
particular, statistically independent samples of the sea clutter amplitude distribution 
were obtained by taking echo samples from resolution cells that are separated by 
distances greater than the decorrelation length of the large scale effects for all 
realisations of received signals (each realisation presents the echo signals from 300 
range bins). 

For each realisation the following parameters were calculated: 

• estimates of the parameters for the considered distributions (Log-Normal, Weibull 
and K-distribution) using different methods; 

• the ratio of the theoretical to the observed moments for the first six moments for 
each combination of parameter estimation and distribution considered; 

• the modified chi-squared index  %*  values for each combination of parameter 
estimation and distribution considered; 

• standard deviation CJV of the estimates of the K-distribution shape parameter by 
each method. 

As each calculated parameter was averaged through all realisations, the presented 
results are the mean values of these parameters. 

Table 1 lists estimates of the parameters for the K-distribution using the three methods 
(Watts's, first and second moments (FSM) and Raghavan's) as well as estimates of the 
parameters for the Log-Normal and Weibull distributions using the ML method, and 
for the Weibull distribution using Menon's method. 

Table 1 Estimates of the distribution parameters by different methods for experimentally 
collected sea clutter data set 

Parameter LN W(ML) W(Menon) K(R) K(W) K(FSM) 
V (H) -0.5645 (Y) 1.3351 (y)1.6254 1.3131 0.6160 0.8256 
c (a2) 0.6297 (03)0.8366 (05)0.8128 2.4039 1.5498 1.8075 

Note, that all the estimators of the K-distribution parameters are constrained so that 
the maximum value of the shape parameter v they estimate is 50. At v=50 the 
distribution is effectively Rayleigh, and in practice the estimated value of the shape 
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parameter rarely exceeds 20. Thus, limiting v does not significantly change the mean- 
square difference between the true PDF and the PDF given by the estimated 
parameters, but such a limit does allow an easier comparison of standard deviations 
for different estimation techniques [14]. This upper limit is used in the numerical 
implementations of the FSM and Raghavan's estimators to obtain a finite search area 
and to ensure convergence. Watts's method sometimes yields negative values of v; 
when this happens, the estimator outputs v equal to 50. 

The estimated parameters were used to produce the probability density functions for 
all the considered distributions, and to compare the results with the amplitude 
histogram of the sea clutter data. 

Figure 3 is a plot of the probability density functions for the K-distribution, estimated 
by Watts's, first and second moments (FSM) and Raghavan's methods. 

Figure 4 is a plot of the probability density functions for the Log-Normal and Weibull 
distributions estimated by the maximum likelihood (ML) method and the K- 
distribution estimated by Watts's method. 

For comparison purposes K-distribution parameters using the ML method were 
calculated. Figure 5 is a plot of the probability density function for the K-distribution 
estimated using this procedure. 

According to the presented results the analysis of amplitude statistic of the clutter has 
demonstrated that the data distribution develops a longer tail than the Rayleigh 
distribution. The estimated values of the shape parameters for the Weibull and the K- 
distributions correspond to those for the spiky clutter. 

Menon's method for the Weibull distribution overestimates the value of the shape 
parameter compared to the optimal ML method, and as a result the threshold might be 
set too low. The consequence of this would be the performance degradation due to a 
notable increase in probability of false alarm (PFA). 

The different methods for estimation of the K-distribution parameters produce quite 
different estimates of the parameters. In particular, the moments methods estimate the 
value of the shape parameter to be much lower than under ML or Raghavan's method. 
The reasons for this might be not only the different approaches used by these methods, 
but the conditions in which the data set was collected. 
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Figure 3 K-PDFs estimated by different methods for experimentally collected sea clutter 
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Figure 4 Different estimated PDFsfor experimentally collected sea clutter 
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Figure 5 K-PDF estimated by ML method for experimentally collected sea clutter 

The data set used in the analysis has a low clutter-to-noise ratio (CNR) . This should 
have a strong influence on the performance results of the K-distribution analysis, 
because the presence of thermal noise, which cannot be neglected, modifies the 
original distribution of the sea clutter. The low amplitude values of the sea clutter 
distribution are the most affected by the noise: for small values of the amplitude, the 
additive noise increases the final power significantly, whereas for large values it leaves 
the power almost unchanged. As a result, the distribution of the sea clutter combined 
with additive noise is not K-distributed, and a closed-form expression defining this 
distribution does not exist. For large values of the shape parameter v, when the 
amplitude is concentrated about its mean value with a low probability for small values 
of the amplitude, the added noise makes little difference to the final distribution. 
However, for small values of the shape parameter v the amplitude distribution is very 
spiky with a high probability for small values of the amplitude. These are affected 
considerably by additive noise. 

As the ML method of estimation uses the suggestion that experimentally collected sea 
clutter data is K-distributed and the expected value of the shape parameter is small 
(v<2), the results are quite predictable: the K-distribution with the parameters under 
the ML estimation technique in this case should fit well the lower amplitude area of 
the experimentally collected data histogram, which is mainly distorted by the noise, 
but give poor results in the tail area. 
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Raghavan's method uses the similarity between the K-distribution and the simpler 
Gamma distribution in order to deliver an estimate of the K-distribution shape 
parameter, that approximates the ML estimate, with the same statistic used to compute 
the ML estimate for the Gamma distribution shape parameter. Because this method 
based on the assumption that experimentally collected sea clutter data is K-distributed, 
it suffers from the same problem as the original ML method for the K-distribution in 
low CNR environment: the K-distribution with the parameters under Raghavan's 
estimation technique fits well the lower amplitude area of the experimentally collected 
data histogram, which is mainly distorted by the noise, but gives poor results in the 
tail area. 

In the contrast, the moments based methods provide with a reasonable fit to the tail of 
the data with added noise, but give a poor fit for the low amplitude values. The 
moments methods use for estimation the observed moments, which are less distorted 
by noise than the amplitude histogram itself, especially the higher order moments. 
Because the tail region is responsible for such an important detection characteristic as 
probability of false alarm, from the point of view of practical radar applications the 
moments methods are better in low CNR situations. 

According to published results [10], the ideal CFAR performance is more sensitive to 
the presence of thermal noise, approaching more rapidly the detection performance 
expected in noise alone as the clutter-to-noise ratio falls. For fixed threshold detection 
(considered in this section ) the performance in spiky clutter is determined to a large 
extent by the clutter spikes even for a relatively low clutter-to-noise ratio. 

To provide a comparison of the different models, the ratio of the theoretical to the 
observed moments for the first to sixth moments for each combination of parameter 
estimation and distribution considered were calculated. Table 2 lists the results of 
these calculations. 

The result for the Log-Normal distribution suggests overestimating of the tail length of 
the experimental data amplitude histogram. The consequence of using the estimated 
parameters of the Log-Normal distribution for the threshold setting would be 
increased detection losses, as the threshold would be set too high. Thus, poor results 
should be expected in this case for small and middle size target detection situations. 

Table 2 Ratio of the theoretical and observed moments for different estimation methods for 
experimentally collected sea clutter data set 

Th./Ob. LN W(ML) W(Menon) K(R) K(W) K(FSM) 
mtl/mol 1.0212 1.0078 0.9540 1.0000 0.9489 1.0000 
mt2/mo2 1.1466 0.9318 0.7444 0.9000 1.0000 0.9998 
mt3/mo3 1.6144 0.7401 0.4721 0.7123 1.0025 0.9172 
mt4/mo4 3.54 00 0.5508 0.2719 0.5460 1.0000 0.8294 
mt5/mo5 15.01 00 0.4206 0.1574 0.4439 1.0639 0.8020 
mt6/mo6 147.5200 0.3445 0.0964 0.3995 1.2516 0.8625 
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The Weibull distribution under the ML method and K-distribution under Raghavan's 
method are similar. The lower moments are in a good agreement with real data , but 
the higher moments are underestimated. Thus, the distributions with these parameters 
give a good fit to lower amplitude area , but they have shorter tails compare to 
experimental data histogram. The result of usage of the parameters of such 
distributions for threshold setting would be an increased PFA. 

Menon's approach for the Weibull distribution fares poorly. This method gives the 
worst results of the techniques we have investigated. 

The second and fourth moments under Watts's method are forced to unity, and this 
method has the best higher moments ratio amongst all the combinations considered. 
The FSM method lies roughly between the    Raghavan's method and the Watts's 
method. 

To verify the results of the amplitude fitting a modified version of the Chi-squared 
statistical test was used. Table 3 lists the modified chi-squared index %l values for all 
these distributions, and the standard deviation Gv of the estimates of the K- 
distribution shape parameter by each method. 

Table 3 Modified chi-squared index xl values and standard deviation av for different 
estimation methods for experimentally collected sea clutter data set 

Parameter LN W(ML) W(Menon) K(R) K(W) K(FSM) 

x2 709.7961 202.5867 73762.2000 204.8008 

0.3109 

111.0911 

0.2136 

121.6138 

0.1986 

The comparison of the modified chi-squared index %l values for all the distributions 
shows, that the best results in the important tail area can be achieved by applying the 
K-distribution model to the sea clutter. Among the K-distribution parameters 
estimation methods, the distribution with the parameters using Watts's method gives a 
better fit in this region to the experimentally collected data histogram than the others. 

Analysis of the standard deviation av of the estimates of the K-distribution shape 
parameter by each method shows that the FSM method has a smaller deviation than 
Watts's method, which can be explained by smaller variability in the lower-order 
sample moments. Quite a big value of the standard deviation for Raghavan's method 
follows from the fact that it gives a good fit to the lower amplitude values, which are 
the most distorted by noise. 

To obtain the number of false alarms for the analysing data set, the thresholds were 
set, derived for the Log-Normal, Weibull distributions and K-distribution under ML 
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estimation, and for the K-distribution under the all three other considered estimation 

techniques for probability of false alarm of 10~3 and 10-4. 

The data set corresponds to 100 pulses by 300 range bins, totalling 30,000 sample 
points. Hence, on average 30 false alarms would be expected for a false alarm rate of 

10~3 (ie one false alarm on every thousand samples ), if the underlying distribution is 
correct and the samples are independent. Similarly a false alarm rate of 10"4 

corresponds to 3 false alarm on average. The spatial correlation of the local variations 
in clutter mean level may result in a similar 'bunching' of false alarms. 

Table 4 displays the number of amplitude values of the sample lying above the 
thresholds corresponding to false alarm rates 10~3 and 10"4 respectively. 

Table 4 Number of false alarms for different estimation methods for experimentally collected sea 
clutter data set 

PFA LN W(ML) K(ML) K(R) K(W) K(FSM) 

10"3 

10"4 
0 

0 

305 
40 

123 
14 

129 
16 

25 
0 

52 
0 

According to the expectations, the Log-Normal distribution is over-conservative. As 
has been reported by other authors, in the tail region the K-distribution lies between 
the Log-Normal distribution and the Weibull distribution. The Weibull distribution 
yields very poor results. The K-distributions under ML estimation and Raghavan's 
method are better. Watts's method is by far the best method, and the FSM method lies 
between Raghavan's methods and Watts's method. 

As was mentioned before, the presence of quite strong thermal noise (the 
experimentally collected data set has a low clutter-to-noise ratio) distorts the resulting 
amplitude distribution from the assumed noise-free K-distributed clutter, especially at 
the low amplitude values. Raghavan's and the FSM methods are sensitive to the lower 
moments of the amplitude distribution. However Watts's method relies on the second 
and fourth moments for estimation of the effective value of the shape parameter. The 
higher moments are less affected by distortions to the lower amplitude values of the 
clutter amplitude distribution by the noise. This indicates why for this data set, 
Raghavan's and the FSM methods tend to fit the lower amplitude values region better, 
but Watts's method is better in modelling the false alarm rates. 

Note, that some influence of the antenna beam shape changes the statistics of 
experimentally collected sea clutter as well. This might be one of the reasons why the 
modified Watts's method may be slightly conservative. Another reason is sensitivity of 
the estimation accuracy for higher order moments to the limited sample size. 
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4. Summary 

In this report the three main distributions for modelling of sea clutter (Log-Normal, 
Weibull and K-distribution) have been briefly reviewed. We have compared the 
methods against a single data set obtained from the data base of recording signals of 
the cliff-top positioned INGARA system. It has been shown that the K-distribution is 
the most promising of the models, especially for estimating thresholds for a low 
probability of false alarm. 

Several existing methods for estimation of the parameters of the K-distribution have 
been analysed and some recommendations about their implementation have been 
suggested. 

Further work needs to be done in this area, to investigate the effect of radar system 
characteristics, look direction, polarisation and area conditions on the parameters of 
the clutter distribution. In order that the models used for sea clutter are validated, it is 
necessary to have a good amount of experimentally collected clutter data sets which 
respond to following requirements: 

• each data set must include several hundreds returned pulses from every range bin 
for the purpose of removing of the speckle component by averaging when 
estimating the correlation length of the large scale effects; 

• each data set must include echo signals from at least several hundred ( preferably 
thousand ) range bins in order to have enough independent samples for analysis 
after subsampling to remove data correlations; 

• sea clutter data records must be of good quality ( i.e. have high clutter-to-noise 
ratio) to minimise the effect of noise on clutter characteristics; 

• the antenna beam shape has to be designed to minimise its influence on the 
recorded data. 

The validation of these models will improve the accuracy of the detection 
performance prediction for maritime surveillance radar systems. 
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